Further, Eqs. (29)-(31) give

. ’ to2my+1 2 9
F\is o= d* (otyg — 2, )pY %00 F +4
(P + 03] ( m ’Z- 1 ) (%’«71) 0 : AI: — !52= ql?m - (33)
(oY 1 .
' 2m,+; »
(p?ocl) ( m ) ( pF‘)”‘l 8™ = D , (34)
: om, + 1)\ & 2nr

from which 6,(1) and a4(¢) are determined.
Note that if pure liquid flows over the rotor surface, Eq. (32) becomes the solution obtained in [4].

It is also possible to use the Rakhmatulin interpenetration model, together with experimental data, to
calculate the flow of materials in other mixers, centrifuges, centrifugal diffuser-atomizers, etc.

NOTATION

Vi, 055 Q55 velocity, mean density, and concentration (by volume) of the j-th phase; 1%, true density of the
j-th phase; T, liquid stress tensor; Fj, mass force acting on the j-th phase; 7}(1 and , Stress and strain-
rate tensors; f;,, phase-interaction force; P, pressure; R, radius of conical rotor channel; xi, orthogonal
coordinates; ., V, density and velocity of mixture; , effective liquid viscosity; d, characteristic dimension
of solid particles; w, angular velocity of rotor; k, k*, n, m, m,, kf, power-law parameters for liquid and
mixture; o, semivertex angle of conical channel; W, collective rate of settling of solid particles; &g, factor
determined by the shape of the solid particles; qj, mass flow rate of j-th phase; r = R—¢é cosa, distance from
axis of rotor rotation to an arbitrary point; p,, bulk density of solid phase.
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CHARACTERISTICS OF FLOW BETWEEN A ROTATING
AND A STATIC DISK IN THE PRESENCE OF
RADIAL FLOW

L. P. Safonov, V. M. Stepanov, UDC 532.526.75
and M. I. Drozdov

An improved method is proposed for the calculation of the flow in the gap between a rotating and
a static disk in the presence of radial flow. The algorithm of the solution is realized on a Nairi-
2 computer,

To solve a number of problems associated with the hydraulic circulation section of a multistage turbine
with disk rotors and, in particular, to calculate the axial forces and temperature state of the rotors of a
steam turbine, it is necessary to know the radial distribution of the pressure of the medium in the gap between
a rotating disk and the corresponding static element (diaphragm, casing). An approximate solution of this
problem was obtained in [1] and subsequently refined in [2-4]. In [5], there was further development of the
method of calculating the pressure distribution along the disk radius in the presence of radial flow, but the
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velocity profile used for the flow in the gap led, under certain conditions, to the appearance of negative values
of the flow swirl, which is inconsistent with the physical interpretation of the problem. Consequently, the
agreement between the results obtained according to [5] and experimental data is limited [6].

In [6], on the basis of a theoretical analysis and experimental data, a calculation based on similarity
theory was proposed. However, this approach requires the availability of data obtained in model experiments.

In a number of works — in particular, [7] — it has been shown by experiment and calculation that in a
broad range of radial flow rates the profile of the radial component of the flow velocity is analogous to the
velocity profile in a radial diffuser. In the present paper, this analogy is applied to the calculation of the
radial pressure distribution in the gap between a rotating and a static disk.

It is assumed that the medium in the gap between the disks is incompressible and that the flow is axisym-
metric. In the case when the gap between the disks is narrow, i.e., the width s is considerably less than the
length ry—ry, the time-averaged turbulent flow in the gap can be described by the equations

5 s
r s
—l—-ir cﬁdz—ij‘cédz=_s_._d_p+"_zr . )
rodr ’ r p dr plo
b b
1 d ,f s
T
—. 2\ ccdz= 22| ; 2)
rr dr 5‘7‘@ Pl (
S
2nr5lc,dz=q. (3)
B

Following [5], it is assumed that if the relative gap s = s/r, = 0.1, the flow between the disks is viscous,
i, e,, there is no potential nucleus of the flow, and that the boundary layers at the rotating and static disks are
of thickness 6 = §' = s/2. In accordance with the results of [7], the profiles of the azimuthal and radial velocity
components are written in the following form: close to the rotating disk,

esimo-nl3 Y|
o= o5 ) l

4)

and close to the wall (static disk),

R (5)
s—z\x
rs 8 |

The stress—tensor components and the components of the flow velocity for the tube are related by a
power law with index 1/n [8]:

close to the disk,

1
2 a2, )
c* v
and close to the wall,
1
u ts—r) a
F:Az[-.—(sv ) } (52)

Let o denote the ratio of the radial and azimuthal components of the relative velocity and the correspond-
ing stress—tensor components in the boundary layer close to the disk:

¢ s

"3 T

T er(l—p) T T
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Fig. 1. Change in pressure in gap between rotating
and static disks for flow from periphery to center
(Rey = 2-10%). The continuous curves correspond
to calculation, and the dashed curves, to experiment
[6]: a) § = 0.0114; b) 0.03; c) 0.06,

Then

o 1
T, =

T Yirae T T Virae ™

For the chosen velocity profile the relative velocity in the boundary layers may be expressed in terms of the
flow velocity at the midpoint of the gap: close to the disk,

ol

and close to the wall,

Taking this into account, together with the relation

mj.—-

U=V e tor—c « F=or(l—g) 1+ a
2 2

Eqgs. (4a) and (5a) give the result

2n, _z‘n_| 2— n
Ty = pAl 4n, [0)]'(1 ——-y)] 1+n1( ;‘é_)l-rnx (1 + az)l+n1.

Hence for the disk

2n, 2 ny—-1 2
Trlemo = apAd; T or (1 — )] (1 4 a?)2FD (—;-) s (6)
_ 2n 2, ny-—1 2
Tuglemo=—pA; T far (1 — [T (14 )T (%)* M
Similarly, for the static disk
¢ s
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Fig. 2. Flow swirl and pressure variation between
rotating and static disks for flow irom periphery to
center (Rey = 2- 106 § = 0.0725). The continuous
curves correspond to calculation by the proposed
algorithm and the dashed-dot curves, to calculation
according to [5}: a) flow swirl; b) pressure drop.

Using a theorem on the integral calculation of the means, the left-hand side of Eq. (2) is transformed,
assuming that the mean-integral value of the azimuthal velocity component is close to its value at the midpoint
of the gap 3]

s s
S‘ Cledz == €,s (c,dz = my—— (10)
¥ Y
Thus Eq. (2) takes the form
og 1 d ey 1o P (1)
on 2 dr ( y) o z'PJo
Then Egs. (3) and (5) give
¢ s = q . (12)
'Y ms( e SRS )
141, 1+4+n, )
In addition,
)
&= qn n
morzs(l-y)( L —2 )
Ptm o lm (122)
_ q
p= . n, 1,
nor’sy - )
1 +-n, 14+n,, i

Substituting Eqs. (4) and (5) into Eqs. (1)and(11), taking into account Egs. (12) and (12a), and passing to
dimensionless variables gives

2n, 2 2n; - n—1

2 P P LI
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The constants n; and A, describe the velocity profile in the region adjacent to the disk and the constants
n, and A,, that in the region adjacent to the wall.

The dependence of the constants n and A on Re is taken to be analogous to the corresponding dependence
for a circular tube. In the range Re = 104-107, according to the data of [8], these dependences may be taken

in the form
n=2IgRe—3; A= 18IgRe— 0.26.

For the flow region adjacent to the disk, the Reynolds number is

1
Lo BN,
Res = w2s _ 2Re, [(1 — P q_(n“:;i_—__l)_] 2 sr, (15)
' v rn
and for the flow region adjacent to the wall

- 2q L

Repy = 22 ke, [y + (22D )75 16)
r’n

In the first approximation, the constant n may be taken equal to 7. As shown by calculation, this ap-
proximation is adequate for the required level of accuracy. As is evident from Eqgs. (15) and (16), Reg d and
Reg, ., depend on the flow swirl and the radius, which complicates Eqs. (13) and (14). In order to investigate
the effect of change in Re along the radius, calculations were made for constant Re (determined at v = 1, i.e.,
at the radius at which the medium is supplied) and for Re changing at each integration step. These calculations
showed that the error in determining the pressure drop over the radius when Re is taken to be constant over the
radius amounted to ~ 10%. '

In the case where the results of the calculation show that Re passes outside the range 10* = Re = 107 for
a considerable part of the channel, the calculation must be repeated with new values of n and A, chosen in
accordance with the flow conditions [8]. Calculations show that in the majority of cases Re does not pass
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outside the given range, although this is possible sometimes, on comparatively small parts of the channel, *
The range of y for which Re < 10? is as follows: for flow close to the wall,

(_v_l();)'_qz( n—1 )'
2s . 2qrsn .

(ory? ’

(e (2
. 28 ) 2arsn .

(y—1p< o

<

for flow close to the disk,

A Nairi-2 digital computer was used to integrate Eqs. (13) and (14). Calculations were carried out for
initial flow swirl 0.57 and 0.60 and various flow-rate coefficients q (in the range 0.08-0.007), corresponding
to measurements made in an experimental investigation [6] of the flow between a rotating and a static disk.
The results of the calculation are shown in Fig. 1, together with radial pressure distributions obtained experi-
mentally.

As is evident from the above, for values of the flow-rate coefficient q = 0.02, the calculated and experi-
mental results are in satisfactory agreement. For g < 0.02, the calculated radial pressure drop is larger
than the experimental value., This is due to a lack of correspondence between the calculation scheme and the
actual flow picture. At these values of i, evidently, a significant role begins to be played by circulation of the
medium in the gap, which is not taken into account in the chosen velocity profile,

In conclusion, note that the velocity profile of the flow used in [5] makes allowance for circulation of the
medium in the gap. However, the use of this profile leads to the appearance in the calculation, under certain
conditions, of a negative value of the flow swirl at the gap midpoint, which is inconsistent with the physical
picture of the problem. For comparison, Fig. 2 shows results calculated by the method outlined above and by
that of [5] for the flow characteristics with flow swirl 0.6, relative gap 0.0725, and flow-rate coefficient q=
0.01 and 0.04. For q = 0.04 the results coincide, whereas for g = 0.01 the flow swirl and pressure drop given
by [5] are considerably lower.

The conclusions are as follows.

1. A method has been developed for the calculation of the flow swirl and radial pressure drop in the gap
between a rotating and a static disk in the presence of radial flow. There is good agreement of the calculated
and experimental results for § = 0,02.

2, For q < 0.02, the discrepancy between the experimental and calculated data increases, evidently as
a result of circulation of the medium in the gap between the disks. To solve the problem in this range of flow
rates, additional investigations are required.

NOTATION

r, ¢, z, radial, azimuthal, and axial coordinates; s, gap width between disks; 6, 6', thicknesses of
boundary layers at static and rotating disks; ,, density; p, pressure; q, volume flow rate of medium in radial
direction; v, kinematic viscosity; u, w, absolute and relative velocities; ¢y, cp, components of absolute
velocity; w, angular velocity; U, flow velocity at gap midpoint; c* =1/ p, dynamic flow veloc1ty, Tars Tzgs
shear-stress components § = s/r,; relative gap width; r = r/r,, relative radius;q=g / 21r2 ws,, relative flow
rate; p = p/pw rz, relative pressure; y = c(P/.z,r, flow swirl; Re = q.rz/u, Reynolds number; A;, A,, n;, Dy,
coefficients. Indices: d, disk; w, wall.
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BEHAVIOR OF FILM OF VISCOPLASTIC LIQUID IN THE
PRESENCE OF SLIP AT THE WALL

Z. P. Shul'man, V. I. Baikov, UDC 532.501.32: 532.135
and S. L. Benderskaya

The shaking loose of a viscoplastic film of limiting thickness from a plane surface is considered
for the case when there is effective slip at the wall.

A film of viscoplastic liquid is characterized by a limiting value of the thickness, at which no flow is
observed under the action of gravity. This limiting thickness is found from the balance of frictional and
gravitational forces

h=10/pg.
where T, is the yield point; p is the density; and g is the acceleration of gravity.

In a number of technological processes, it is necessary to prevent the formation of a liquid film at a
wall, The present paper considers a dynamic approach to this problem, by vibration of the wall.

Suppose that the wall and the adhering film are moving uniformly downward with velocity U and, at the
initial moment t = 0, stop instantaneously. Close to the wall, the stress exceeds the yield point 7y, which
leads to the formation of a region of viscoplastic flow. In the second region, where the stress is less than
Tys the liquid moves in a quasisolid manner. In the immediate vicinity of the wall, the moving disperse system,
or polymer solution, may be separated into a thin layer of solvent, with respect to which all the remaining
mass slips, as in a lubricant. It is possible to neglect the thickness of the region at the wall in comparison
with the film thickness and to assume that at the surface of the plate the adhesion hypothesis does not hold, i.e.,
there is effective slip at the wall, u(0, t) = 0. (The case u(0, t) = 0 was considered in [1].)
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Fig. 1. Velocity of quasisolid core of film flow (a) and boundary
of quasisolid region (b) for S = 0.25: 1) P = 0; 2) 0.05; 3) 0.1.
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